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Abstract. Numerical solutionrr of the thermodynamically self-consistent RY integd 
equation for the pair structure of a binary fluid hard sphere mixture, of size ratio 
ollaz = 0.1, exhibit divergent concentration fluctuations when Ihe partial p a w  
fractions of the two species am comparable, i.e. at low concentration of large spheres. 
Thia spinodal instability is studied at constant pressure, and it is shown that phase 
separation sets in for a reduced pressure P. = P u : / b T  in the range 10-2 < P* < 
10-1. 

1. Introduction 

Charge or sterically stabilized suspensions of mesoscopic colloidal particles in a solvent 
share many common features with simple atomic liquids (for a recent review see [l]). 
While the dynamical properties, like the diffusion of the colloidal particles, are clearly 
affected by the presence of the solvent, experimental data on the spatial structure and 
the phase diagramof the suspension are generally interpreted on the basis ofstatistical 
models which ignore the microscopic nature of the suspending liquid. This point of 
view is usually justified by invoking the considerable difference in the length and 
time scales between the mesoscopic colloids and the microscopic solvent atoms, which 
naturally leads to a continuum picture of the latter. The current article is devoted to 
a ‘discrete solvent’ model of colloidal suspensions, namely a highly asymmetric binary 
mixture of hard spheres. In a preliminary publication [2] strong evidence was offered 
for fluid-fluid phase separation when the size ratio becomes sufficiently asymmetric. 
The calculations in [2] were carried out with a constant effective packing fraction of 
the small (solvent) spheres. In this article the stability limit, corresponding to the 
spinodal line, is iuvestigated at constant pressure, and a rough estimate is obtained 
for the critical pressure P, below which no phase separation occurs. 

2. The asymmetric binary hard sphere model 

The model under consideration is a binary mixture of hard spheres. The mixture 
contains p1 ‘solvent’spheres per unit volume, of diameter ul and pz ‘colloidal’spheres 
per unit volume, of diameter u2 > uI. Let y = ul/uz < 1 be the size ratio and 
qa = 7rp&6 the partial packing fractions (a = 1,2).  The diameters are assumed to 
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be additive throughout, i.e. u12 = (ul + u2)/2 and the focus will be on the situation 
where y < 1 but ql % qz, corresponding to concentrated colloidalswpensions. Under 
these conditions the number concentrations z1 = ql / (q l  + qz$) and zz = qz$/(ql + 
q2g) are such that z2 <K zl cz 1. Since the temperature is an irrelevant variable 
for hard sphere systems, an equilibrium thermodynamic state of a binary mixture 
is entirely characterized by two independent variables which may be chosen to be 
the partial packing fractions and q2 or any combination thereof (e.g. 9 = ql + qz 
and zz). Alternatively one may choose as independent variables the reduced pressure 
P' = Puf/kBT and qz.  Note that a straightforward application of Gibbs' phase rule 
to the present case allows at most three phases to coexist at a triple point. 

The known results on binary hard sphere mixtures may be briefly summarized as 
follows. An analytic solution of the Perms-Yevick (PY) integral equations has been 
obtained in closed form [3] and shown to predict complete miscibility for hard sphere 
mixtures at all compositions and for all size ratios y [4]. The PY results exhibit the 
familiar thermodynamic inconsistency, in that the equation-of-state calculated from 
the virial theorem 
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and from the compressibility relation 

(E) = 1 - c P R " R ( k  = 0) 
PS R 

differ by typically 20% at high packingfractions, In equation (1) the geR(uOp) are the 
contact values of the pair distribution functions, while in equation (2) imp(k) denotes 
the Fourier transform of the aP direct correlation function (1 < a,P < 2). If Pv 
denotes the pressure derived from (1) while Pc is the pressure calculated from (2) 
within the PY approximation, the linear combination [5] 

yields results in good agreement with the available simulation data [G, 7 .  The latter 
have been mostly limited to equimolar mixtures (zl E, z2,  and hence qI a q2 when 
y a 1) and show no indication of phase separation, in qualitative agreement with 
the PY theory. An attempt to simulate moderately asymmetric mixtures (y = $ 
and +) with comparable packing fractions (ql N qz) met with considerable ergodicity 
problems [SI but again confirms the overall validity of the semi-empirical ansatz (3). 

The fluidsolid phase diagram of weakly asymmetric hard sphere mixtures has 
been calculated from density functional theory [9] and from extensive Monte Carlo 
calculations of the free energy of substitutionally disordered hard sphere crystals [lo]. 
The phase diagram exhibits a eutectic and phase separation in the solid phase for size 
ratios y 5 0.85. 

A striking feature of asymmetric hard sphere mixtures which is already apparent 
at the PY level 111, 121 is the 'osmotic depletion' effect which leads to an effective 
attraction (or 'stickiness') between the large spheres when their mutual distance is 
in the range uz 5 r 5 c1 + uz. When y <K 1, but q1 N q2,  the internal pressure is 
almost entirely due to the small (solvent) spheres; when these are expelled from the 
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volume left between two approaching large spheres, the pressure exerted by the solvent 
spheres on the diametrically opposite sides of the large spheres is no longer balanced, 
leading to a strong attractive interaction of entropic origin, and a contact value gzz(ua) 
which diverges like l/y in the PY approximation [12]. The effective attraction is a 
consequence of the discrete nature of the solvent and points to the inadequacy of 
the continuum picture of colloidal suspensions even in the limit y + 0, the partial 
packing fractions being held constant. In [2] it was shown that the stickiness effect 
is enhanced when more accurate integral equations are used to determine the pair 
structure and that the resulting tendency towards aggregation of the large spheres 
leads to divergent concentration fluctuations and spinodal instability for size ratios 
y 5 0.2. This aggregation phenomenon is very similar to ‘depletion flocculation’ as 
observed, for example, in recent simulations of asymmetric binary hard disk systems 
~31. 

3. Numerical solutions of thermodynamically self-consistent integral equa- 
tions 

The predictions in 121 are based on numerical solutions of thermodynamically self- 
consistent integral equations. The latter are designed to enforce consistency between 
the virial and compressibility routes to the equation-of-state by the use of generalized 
closure relations containing parameters which are adjusted to that purpose. In [2] 
the closure proposed by Rogers and Young (RY) [I41 and by Ballone et al (BPGG) 
[15] were used. Both closures lead to spinodal instability, although the divergence 
of concentration fluctuations is stronger with the RY closure. Since one- and two- 
parameter versions of the latter lead to similar results, we have more confidence in 
the RY closure and this will be adopted throughout this article. For the hard sphere 
mixture, the RY closure reads 

where Q denotes the Heaviside step function, yap(r )  = hmp(r)  -cap( ’ )  and fap ( r )  is 
a set of switching functions. The latter are chosen to be of the form 

f a a ( ~ )  = 1 - exp(--E,pr) ( 5 )  

so that the closure (4) interpolates continuously between the familiar PY and hyper- 
netted chain (HNC) closures when the parameters -EQp are varied from 0 to CO. For 
any choice of tQg, the closure relation (4) together with the Ornstein-Zernike relations 
between the Fourier transforms of the total and direct correlation functions hap and 
cap: 

7 

form a closed set of equations which were solved numerically using Gillan’s hybrid algo- 
rithm [16]. The tmp in (5) were assumed to be of the simplescaling form tmp = t /uQp,  
and the single parameter ( was adjusted until the total compressibilities calculated 
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Figure 1. 
y = 0.1, '11 = 0.01 and nz = 0.5: full curve, RY results; dots, PY results. 

C~uccntralion-concentration structure factor &(k) against k q ~ ,  for 

from equations (1) and (2) agreed to within better than 1%. This thermodynamic 
consistency could he achieved for all thermodynamic states investigated, except in the 
immediate vicinity of the spinodal line, where the concentration fluctuation diverges 
and thermodynamic consistency could only be aproximately satisfied in certain cases. 

In [Z] it was shown that an improved version of the RY equation (RYz) [17] which 
allows for independent variation of two COB parameters to satisfy the two thermo- 
dynamic consistency conditions associated with the partial (rather than the total) 
compressibilities, leads to results in good agreement with those obtained with the 
single parameter version described earlier. Consequently restriction will he made to 
the latter in the following. The key diagnostic signalling thermodynamic instability of 
a homogeneous mixture is provided by the divergence of concentration fluctuations. 
Let pkm denote a Fourier component of the microscopic density of a-spheres: 

No 

pk .  = exp(ik . v i , )  (7) 
i=1 

where via is the position of the ith sphere of species a. The local variable associated 
with concentration fluctuations is [18] 

pk ,  = x2pkt - zlpk, (8 )  

Scc(k) = * b k c p - k e )  (9) 

and the corresponding concentration-concentration structure factor is 

Standard fluctuation theory leads to the following long wavelength limit [18] 

where G denotes the Gibbs free energy, which turns from a concave to a convex 
function of the concentration x 1  on the spinodal, so that the diagnostic for the location 
of the latter is in the k = 0 divergence of the concentration-concentration structure 
factor, as calculated from the integral equation. 
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A typical example of PY and RY results for S,(k) of a concentrated suspension 
with size ratio y = 0.1 is shown in figure 1. While the PY structure factor is very flat 
near the origin, indicative of very reduced concentration fluctuations, the latter are 
seen to be strongly enhanced within the thermodynamically self-consistent RY scheme, 
as signalled by a pronounced central peak in S=(k). 

4. Constant pressure results 

In [2] the points of thermodynamic instability corresponding to divergent concentra- 
tion fluctuations (spinodal points) were located by varying q2 a t  constant eflective 
packing fraction q; of the small (solvent) spheres. q; is determined by the volume 
V' < V left by the large spheres, and accessible to the centres of the small spheres. 
In the limit y -+ 0 , q ;  = ql/ ( l  - q2), but the finite values of y, V' (and hence 7;) may 
be estimated from scaled particle theory [19]. 

Fixing q; is expected to be equivalent to working at constant pressure, at least in 
the limit y < 1, when the pressure is almost entirely determined by the fluid of small 
spheres. However, even for the smallest ratio explored in [2], namely y = 0.1, it was 
found that the pressure decreased significantly as q2 was increased at  fixed q; .  On the 
other hand the pressures calculated from the RY closure agree systematically within 
better than 1%, with the predictions of the semi-empirical equation-of-state (3). Since 
the latter is a simple, analytic function of ql and q2, it is easily inverted to yield the 
value of qI corresponding to given values of P' and q2. In this way approximately 
constant pressure calculations were carried out by solving 

P&(rll,02) = P' (11) 

for reduced pressures in the range 0.5 > P' > 0.01, and successive values of q2. The 
resulting RY pressures are plotted in figure 2 as a function of q2; they are seen to be 
very nearly constant and equal to the input value P' in ( I l ) ,  and to decrease slightly 
for the largest values of q2(q2 2 0.4). The variation of q ,  with q2 is shown in figure 3. 

Following the procedure summarized by equation (11) we are now in a position to 
investigate the thermodynamic stability of asymmetric binary hard sphere mixtures at  
(nearly) constant pressure. The calculations reported in [2] were carried out for large 
effective packing fractions vi(> 0.4) of the solvent, corresponding to relatively high 
reduced pressures, P' N 5. For the size ratio y = 0.1, the spiuodal was reached at  
a fairly low packing fraction of large spheres, q2 N 0.05. In an attempt to locate 
the critical point at the top of the spinodal curve, t.he present constant pressure 
calculations were carried out at much lower values of P', namely 0.01 < P' < 0.5. 
The variation of 

with is shown in figure 4 for several pressures. For an ideal mixture or in the 
infinite dilution limit (z2  -+ 0 or 1) A goes to 1, while A drops to zero on the spinodal 
curve. 

For P' = 0.01 A is seen always to exceed 1, and to go through a maximum as a 
function of x2 signalling complete miscibility at all concentrations. When P' > 0.1, 
A first increases with q2, goes through a maximum and then drops sharply to zero. 
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Figure 2. Reduced pressure P'. 85 calculated from RY theory, plotted against q ~ ,  
for values of the estimate (3) of the pressure fixed at 0.2 (stars), 0.1 (open circles) 
and 0.01 (dots). The nearly horizontal behaviour prover that the present calculations 
correspond effectively to constant pressure. 
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Figure 3. Variations of '11 with 91 for P' = 0.5 (squares). 0 .4  (crosses), 0.3 
gles), 0.2 (stars), 0.1 (open cirdes) and 0.01 (dots). 

(trian- 

Although numerical difficulties linked to the underlying divergence prevent solutions 
being obtained very close to the spinodal, the slope of the A(qz)  curves becomes nearly 
vertical, leaving little doubt that they are headed towards zero. As P' increases, the 
critical qz shifts towards smaller values as one might expect. 

According to the results summarized in figure 4, the critical pressure Pc, below 
which no phase separation occurs, must he in the range 0.01 < P* < 0.1. Preliminary 
calculations carried out at pressures in that interval show indications of loops in the 
A plotted against z : ' ~  curves, including regions where A goes negative, typical of 
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Figure 4. A (defined by (12)) plotted against si’* for various pressures P’. The 
symbols have the same meaning as in figure 3. 

spinodal decomposition. More work in that part of the parameter space is in progress. 

5. Discussion 

The constant pressure results presented in this article confirm and extend the prelimi- 
nary results of [2] which were carried out at constant effective packing fraction q{ .  
Beyond a P*-dependent critical concentration z2 of large spheres, the binary mixture 
becomes unstable against concentration-fluctuations for a size ratio y = 0.1. Below a 
critical pressure P,‘ in the interval [0.01,0.1], the binrvy hard sphere mixture is stable 
at all concentrations. Above P,‘ phase separation sets in. The present calculations 
predict the value of the maximum concentration of large spheres, but do not yield 
any information on the composition of the co-existing phase, which could be fluid or 
solid, with a higher Concentration of large spheres. Another possibility would be a 
super-ionic-like phase, with the large spheres forming a close-packed crystal, while the 
small spheres could form a fluid within the interstitial space left by the large spheres. 

Although we are far from being able to present a complete phase diagram, the 
present calculations which supplement those of [2] show that fluid mixtures of hard 
spheres are unstable against phase separation, for sufficiently asymmetric size ratios. 

Although a direct check of the predictions based on the self-consistent integral 
equations by computer simulation is not an easy task, as pointed out already in sec- 
tion 2, an attempt to observe fluid-fluid phase coexistence in highly asymmetric hard 
disk and hard sphere mixtures will be made using the Gibbs ensemble and a general- 
ization of the ‘particle swapping’ technique [ZO]. 
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